MATHEMATICS

MPC2
Unit Pure Core 2

Wednesday 10 January 20071.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The diagram shows a sector $O A B$ of a circle with centre O.

The radius of the circle is 6 cm and the angle $A O B$ is 1.2 radians.
(a) Find the area of the sector $O A B$.
(b) Find the perimeter of the sector $O A B$.

2 Use the trapezium rule with four ordinates (three strips) to find an approximate value for

$$
\int_{0}^{3} \sqrt{2^{x}} \mathrm{~d} x
$$

giving your answer to three decimal places.

3 (a) Write down the values of p, q and r given that:
(i) $64=8^{p}$;
(ii) $\frac{1}{64}=8^{q}$;
(iii) $\sqrt{8}=8^{r}$.
(3 marks)
(b) Find the value of x for which

$$
\frac{8^{x}}{\sqrt{8}}=\frac{1}{64}
$$

4 The triangle $A B C$, shown in the diagram, is such that $B C=6 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$. The angle $B A C$ is θ.

(a) Use the cosine rule to show that $\cos \theta=\frac{1}{8}$.
(b) Hence use a trigonometrical identity to show that $\sin \theta=\frac{3 \sqrt{7}}{8}$.
(c) Hence find the area of the triangle $A B C$.

5 The second term of a geometric series is 48 and the fourth term is 3 .
(a) Show that one possible value for the common ratio, r, of the series is $-\frac{1}{4}$ and state the other value.
(b) In the case when $r=-\frac{1}{4}$, find:
(i) the first term;
(ii) the sum to infinity of the series.

6 A curve C is defined for $x>0$ by the equation $y=x+1+\frac{4}{x^{2}}$ and is sketched below.

(a) (i) Given that $y=x+1+\frac{4}{x^{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) The curve C has a minimum point M. Find the coordinates of M.
(iii) Find an equation of the normal to C at the point $(1,6)$.
(b) (i) Find $\int\left(x+1+\frac{4}{x^{2}}\right) \mathrm{d} x$.
(ii) Hence find the area of the region bounded by the curve C, the lines $x=1$ and $x=4$ and the x-axis.

7 (a) The first four terms of the binomial expansion of $(1+2 x)^{8}$ in ascending powers of x are $1+a x+b x^{2}+c x^{3}$. Find the values of the integers a, b and c.
(b) Hence find the coefficient of x^{3} in the expansion of $\left(1+\frac{1}{2} x\right)(1+2 x)^{8}$. (3 marks)

8 (a) Solve the equation $\cos x=0.3$ in the interval $0 \leqslant x \leqslant 2 \pi$, giving your answers in radians to three significant figures.
(b) The diagram shows the graph of $y=\cos x$ for $0 \leqslant x \leqslant 2 \pi$ and the line $y=k$.

The line $y=k$ intersects the curve $y=\cos x, 0 \leqslant x \leqslant 2 \pi$, at the points P and Q. The point M is the minimum point of the curve.
(i) Write down the coordinates of the point M.
(ii) The x-coordinate of P is α.

Write down the x-coordinate of Q in terms of π and α.
(c) Describe the geometrical transformation that maps the graph of $y=\cos x$ onto the graph of $y=\cos 2 x$.
(d) Solve the equation $\cos 2 x=\cos \frac{4 \pi}{5}$ in the interval $0 \leqslant x \leqslant 2 \pi$, giving the values of x in terms of π.

Turn over for the next question

9 (a) Solve the equation $3 \log _{a} x=\log _{a} 8$.
(b) Show that

$$
3 \log _{a} 6-\log _{a} 8=\log _{a} 27
$$

(c) (i) The point $P(3, p)$ lies on the curve $y=3 \log _{10} x-\log _{10} 8$.

Show that $p=\log _{10}\left(\frac{27}{8}\right)$.
(ii) The point $Q(6, q)$ also lies on the curve $y=3 \log _{10} x-\log _{10} 8$.

Show that the gradient of the line $P Q$ is $\log _{10} 2$.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

