www.mymainscloud.com

General Certificate of Education January 2007 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Pure Core 2

MPC2

Wednesday 10 January 2007 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P89590/Jan07/MPC2 6/6/6/ MPC2

Answer all questions.

1 The diagram shows a sector OAB of a circle with centre O.

The radius of the circle is 6 cm and the angle AOB is 1.2 radians.

(a) Find the area of the sector OAB.

(2 marks)

(b) Find the perimeter of the sector OAB.

(3 marks)

2 Use the trapezium rule with four ordinates (three strips) to find an approximate value for

$$\int_0^3 \sqrt{2^x} \, \mathrm{d}x$$

giving your answer to three decimal places.

(4 marks)

- 3 (a) Write down the values of p, q and r given that:
 - (i) $64 = 8^p$;

(ii)
$$\frac{1}{64} = 8^q$$
;

(iii)
$$\sqrt{8} = 8^r$$
.

(3 marks)

(b) Find the value of x for which

$$\frac{8^x}{\sqrt{8}} = \frac{1}{64} \tag{2 marks}$$

4 The triangle ABC, shown in the diagram, is such that BC = 6 cm, AC = 5 cm and AB = 4 cm. The angle BAC is θ .

- (a) Use the cosine rule to show that $\cos \theta = \frac{1}{8}$. (3 marks)
- (b) Hence use a trigonometrical identity to show that $\sin \theta = \frac{3\sqrt{7}}{8}$. (3 marks)
- (c) Hence find the area of the triangle ABC. (2 marks)
- 5 The second term of a geometric series is 48 and the fourth term is 3.
 - (a) Show that one possible value for the common ratio, r, of the series is $-\frac{1}{4}$ and state the other value. (4 marks)
 - (b) In the case when $r = -\frac{1}{4}$, find:
 - (i) the first term; (1 mark)
 - (ii) the sum to infinity of the series. (2 marks)

6 A curve C is defined for x > 0 by the equation $y = x + 1 + \frac{4}{x^2}$ and is sketched below.

- (a) (i) Given that $y = x + 1 + \frac{4}{x^2}$, find $\frac{dy}{dx}$. (3 marks)
 - (ii) The curve C has a minimum point M. Find the coordinates of M. (4 marks)
 - (iii) Find an equation of the normal to C at the point (1,6). (4 marks)
- (b) (i) Find $\int \left(x+1+\frac{4}{x^2}\right) dx$. (3 marks)
 - (ii) Hence find the area of the region bounded by the curve C, the lines x = 1 and x = 4 and the x-axis. (2 marks)
- 7 (a) The first four terms of the binomial expansion of $(1+2x)^8$ in ascending powers of x are $1+ax+bx^2+cx^3$. Find the values of the integers a, b and c. (4 marks)
 - (b) Hence find the coefficient of x^3 in the expansion of $\left(1 + \frac{1}{2}x\right)(1 + 2x)^8$. (3 marks)

- 8 (a) Solve the equation $\cos x = 0.3$ in the interval $0 \le x \le 2\pi$, giving your answers in radians to three significant figures. (3 marks)
 - (b) The diagram shows the graph of $y = \cos x$ for $0 \le x \le 2\pi$ and the line y = k.

The line y = k intersects the curve $y = \cos x$, $0 \le x \le 2\pi$, at the points P and Q. The point M is the minimum point of the curve.

- (i) Write down the coordinates of the point M. (2 marks)
- (ii) The x-coordinate of P is α .

Write down the x-coordinate of Q in terms of π and α . (1 mark)

- (c) Describe the geometrical transformation that maps the graph of $y = \cos x$ onto the graph of $y = \cos 2x$. (2 marks)
- (d) Solve the equation $\cos 2x = \cos \frac{4\pi}{5}$ in the interval $0 \le x \le 2\pi$, giving the values of x in terms of π .

Turn over for the next question

Solve the equation $3 \log_a x = \log_a 8$.

Show that (b)

$$3\log_a 6 - \log_a 8 = \log_a 27 \tag{3 marks}$$

The point P(3, p) lies on the curve $y = 3 \log_{10} x - \log_{10} 8$. (c)

Show that $p = \log_{10}\left(\frac{27}{8}\right)$.

(2 marks)

(ii) The point Q(6, q) also lies on the curve $y = 3 \log_{10} x - \log_{10} 8$.

Show that the gradient of the line PQ is $\log_{10} 2$.

(4 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page